Эквиваленты применяются тогда, когда невозможно приложить предметы одной совокупности к предметам другой. Например, чтобы убедить детей в том, что на одной из карточек нарисовано столько же предметов, сколько на другой, берутся кружки и накладываются на рисунки одной карточки, а затем на рисунки другой. В зависимости от того, остался ли лишний кружок, или их не хватило, или кружков оказалось столько, сколько рисунков на второй карточке, делается вывод о том, на какой карточке больше (меньше) предметов или их поровну на обеих карточках.
В старшей группе сопоставляются множества, составленные из предметов разного размера или по-разному расположенные, при этом используются те же приемы, что и в средней группе.
Когда детей познакомят со всеми числами до 10, им показывают, что для ответа на вопрос сколько? не имеет значения, в каком направлении ведется счет. Они в этом сами убеждаются, пересчитывая одни и те же предметы в разных направлениях: слева направо и справа налево; сверху вниз и снизу вверх. Позднее детям дают представление о том, что считать можно предметы, расположенные не только в ряд, но и самыми различными способами. Они считают игрушки (вещи), расположенные в форме разных фигур (по кругу, парами, неопределенной группой), изображения предметов на карточке лото, наконец, кружки числовых фигур.
Детям показывают разные способы счета одних и тех же предметов и учат находить более удобные (рациональные), позволяющие быстро и правильно сосчитать предметы. Пересчет одних и тех же предметов разными способами (3—4 способа) убеждает детей в том, что начинать счет можно с любого предмета и вести его в любом направлении, но при этом надо не пропустить ни один предмет и ни один не сосчитать дважды.
Специально усложняют форму расположения предметов. Если ребенок ошибается, то выясняют, какая ошибка допущена (пропустил предмет, один предмет сосчитал дважды). Воспитатель, пересчитывая предметы, может намеренно допустить ошибку. Дети следят за действиями педагога и указывают, в чем заключалась его ошибка. Делают вывод о необходимости хорошо запомнить предмет, с какого был начат счет, чтобы не пропустить ни один из них и один и тот же предмет не сосчитать дважды.
Варьируя задания, усложняя форму расположения предметов, педагог закрепляет соответствующие представления и способы действия.
В старшей группе большое место отводят упражнениям в составлении и подборе равночисленных множеств. Они позволяют дать детям представление о том, что множествам, содержащим одинаковое количество элементов, соответствует одно-единственное натуральное число, а одному и тому же натуральному числу соответствуют численности множеств самых разнообразных предметов. Используют разные варианты заданий. Например, детям предлагают отсчитать 3 разновидности игрушек (моделей геометрических фигур и др.) по названному числу и разложить на 3 полосках или в 3 рядах так, чтобы было видно, что игрушек поровну, т. е. положить одну игрушку под другой.
На первом занятии всем детям называют одно число, а в дальнейшем сидящим за разными столами или в разных рядах могут называть разные числа. Наконец, каждому ребенку можно давать индивидуальное задание. Раскладывание 3 видов предметов занимает много времени, поэтому, предлагая такие задания, целесообразно называть числа в пределах 8.
Информация по педагогике:
Этапы становления технологического образования в России и за рубежом
Еще задолго до появления педагогических теорий, в многовековой практике трудовому воспитанию молодежи в Древней Руси отводилось важное место. Традиции, обычаи и обряды формировали социально значимые качества, среди которых трудовые навыки умения, трудолюбие находились на одном из первых мест. При у ...
Рекомендации по совершенствованию методики преподавания географии с учетом
результатов ЕНТ 2007 г
Положительные изменения в качестве географического образования экзаменуемых, зафиксированные в 2006 г., безусловно, стали результатом систематической работы учителей и психолога, направленной на достижение учащимися соответствующих требований к уровню подготовки выпускников. Это свидетельствуе ...
Возрастные особенности детей младшего школьного возраста в процессе общения
и конфликта
В общеобразовательном учреждении можно выделить четыре основных субъекта деятельности: ученик, учитель, родители и администратор. В зависимости от того, какие субъекты вступают во взаимодействие, конфликты подразделяют на виды: ученик-ученик; ученик-учитель; ученик-родители; ученик-администратор; у ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.