При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем проведения прямых и окружностей так и не увенчались успехом. Эту задачу не могли решить математики на протяжении более двух тысячелетий. Лишь в 19 веке усилиями нескольких выдающихся математиков – Ламберта, Лиувилля, Эрмита и Вейерштрасса – была установлена неразрешимость этой задачи, невозможность такого построения. Было предложено много приближенных решений. Неразрешимыми оказались и задача трисекции угла – деления данного угла на три равные части с помощью циркуля и линейки, и задача удвоения куба – построения ребра куба, объем которого вдвое больше объема данного куба.
Изыскание все новых и новых способов решения задачи о трисекции угла показало, что эта задача тесно примыкает к задачам алгебры и тригонометрии. Так, еще в XV в. самаркандский ученый ал-Каши применил трисекцию угла к составлению весьма точных тригонометрических таблиц, нужных для вычислительной математики и астрономии. Применяя прием приближенного численного решения кубического уравнения, он по известному значению sin 3° производит вычисление sin 1°. Далее, в XVI в. знаменитый французский математик Ф. Виет на основе трисекции угла находит тригонометрическое решение кубического уравнения в так называемом неприводимом случае.
Весьма оригинальные, но довольно сложные способы решения задачи о трисекции угла дали ученые Декарт, Ньютон, Клеро, Шаль и др. Все эти решения обычно основаны на отыскании точек пересечения конического сечения с окружностью. Попытки найти новые решения задачи о трисекции угла продолжаются и в настоящее время (например, при помощи номографии).
Еще в 1755 г. Парижская академия наук ввиду бесплодности усилий математиков, а еще более нематематиков, пытавшихся решить знаменитые задачи древности, вынесла решение впредь не принимать на рассмотрение работы, касающиеся квадратуры круга, а также трисекции угла и удвоения куба. Это несколько охладило пыл «квадратурщиков».
Знаменитые задачи древности представляют большой интерес для изучения, т.к. имеют очень простые формулировки, но, тем не менее, не могут быть решены при помощи циркуля и линейки без привлечения дополнительных средств.
Информация по педагогике:
Балльно-рейтинговая система оценивания знаний и обеспечения качества
учебного процесса
Важнейшей составляющей системы зачетных единиц является рейтинговая система оценки знаний. Она позволяет реализовывать механизмы обеспечения качества и оценки результатов обучения, активизировать учебную работу студентов, у которых появляются стимулы управления своей успеваемостью. Успешность изуче ...
Как родители должны поддерживать выпускника в экзаменационную пору
Зачастую родители переживают ответственные моменты в жизни своих детей гораздо острее, чем свои. Но взрослому человеку гораздо легче справиться с собственным волнением, взяв себя в руки. В экзаменационную пору всегда присутствует психологическое напряжение. Стресс при этом - абсолютно нормальная ре ...
Развивающее обучение
Среди большого числа новаций, захлестывающих сегодня учебные заведения, развивающее обучение (РО) занимает достаточно стабильное положение и стоит на одном из первых мест по значимости и связываемых с ним ожиданий по повышению качества образования. Вместе с тем, теория и технология развивающего обу ...
Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.