Общая характеристика знаменитых задач древности

При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем проведения прямых и окружностей так и не увенчались успехом. Эту задачу не могли решить математики на протяжении более двух тысячелетий. Лишь в 19 веке усилиями нескольких выдающихся математиков – Ламберта, Лиувилля, Эрмита и Вейерштрасса – была установлена неразрешимость этой задачи, невозможность такого построения. Было предложено много приближенных решений. Неразрешимыми оказались и задача трисекции угла – деления данного угла на три равные части с помощью циркуля и линейки, и задача удвоения куба – построения ребра куба, объем которого вдвое больше объема данного куба.

Изыскание все новых и новых способов решения задачи о трисекции угла показало, что эта задача тесно примыкает к задачам алгебры и тригонометрии. Так, еще в XV в. самаркандский ученый ал-Каши применил трисекцию угла к составлению весьма точных тригонометрических таблиц, нужных для вычислительной математики и астрономии. Применяя прием приближенного численного решения кубического уравнения, он по известному значению sin 3° производит вычисление sin 1°. Далее, в XVI в. знаменитый французский математик Ф. Виет на основе трисекции угла находит тригонометрическое решение кубического уравнения в так называемом неприводимом случае.

Весьма оригинальные, но довольно сложные способы решения задачи о трисекции угла дали ученые Декарт, Ньютон, Клеро, Шаль и др. Все эти решения обычно основаны на отыскании точек пересечения конического сечения с окружностью. Попытки найти новые решения задачи о трисекции угла продолжаются и в настоящее время (например, при помощи номографии).

Еще в 1755 г. Парижская академия наук ввиду бесплодности усилий математиков, а еще более нематематиков, пытавшихся решить знаменитые задачи древности, вынесла решение впредь не принимать на рассмотрение работы, касающиеся квадратуры круга, а также трисекции угла и удвоения куба. Это несколько охладило пыл «квадратурщиков».

Знаменитые задачи древности представляют большой интерес для изучения, т.к. имеют очень простые формулировки, но, тем не менее, не могут быть решены при помощи циркуля и линейки без привлечения дополнительных средств.

Информация по педагогике:

Психолого-лингвистические приемы обучению иноязычных текстов лингвострановедческого содержания
Чтение входит в сферу коммуникативно-общественной деятельности человека и обеспечивает в ней одну из форм - письменную — вербального (словесного) общения. В современной жизни чтению принадлежит исключительно важная роль, так как оно открывает специалисту доступ к ведущим на сегодняшний день источни ...

Критерии интеграции ребёнка с особенностями развития ребёнка в группу сверстников
Для определения возможности и успешности интегрированного обучения детей с различными нарушениями, важным является разработка и обоснование критериев (медицинских, психологических, педагогических, социальных) в соответствии с которыми ребенок может быть интегрирован в среду нормально развивающихся. ...

Работа апелляционной комиссии
Для разрешения спорных вопросов при оценке выполне­ния тестовых заданий и защи­ты прав участников ЕНТ в каж­дом ПП ЕНТ создается апелля­ционная комиссия. Заявление на апелляцию подается в апелляционную ко­миссию до 13 часов следую­щего дня после объявления результатов тестирования и рассматривается ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2024 - All Rights Reserved - www.easilyeducation.ru