Общая характеристика знаменитых задач древности

При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем проведения прямых и окружностей так и не увенчались успехом. Эту задачу не могли решить математики на протяжении более двух тысячелетий. Лишь в 19 веке усилиями нескольких выдающихся математиков – Ламберта, Лиувилля, Эрмита и Вейерштрасса – была установлена неразрешимость этой задачи, невозможность такого построения. Было предложено много приближенных решений. Неразрешимыми оказались и задача трисекции угла – деления данного угла на три равные части с помощью циркуля и линейки, и задача удвоения куба – построения ребра куба, объем которого вдвое больше объема данного куба.

Изыскание все новых и новых способов решения задачи о трисекции угла показало, что эта задача тесно примыкает к задачам алгебры и тригонометрии. Так, еще в XV в. самаркандский ученый ал-Каши применил трисекцию угла к составлению весьма точных тригонометрических таблиц, нужных для вычислительной математики и астрономии. Применяя прием приближенного численного решения кубического уравнения, он по известному значению sin 3° производит вычисление sin 1°. Далее, в XVI в. знаменитый французский математик Ф. Виет на основе трисекции угла находит тригонометрическое решение кубического уравнения в так называемом неприводимом случае.

Весьма оригинальные, но довольно сложные способы решения задачи о трисекции угла дали ученые Декарт, Ньютон, Клеро, Шаль и др. Все эти решения обычно основаны на отыскании точек пересечения конического сечения с окружностью. Попытки найти новые решения задачи о трисекции угла продолжаются и в настоящее время (например, при помощи номографии).

Еще в 1755 г. Парижская академия наук ввиду бесплодности усилий математиков, а еще более нематематиков, пытавшихся решить знаменитые задачи древности, вынесла решение впредь не принимать на рассмотрение работы, касающиеся квадратуры круга, а также трисекции угла и удвоения куба. Это несколько охладило пыл «квадратурщиков».

Знаменитые задачи древности представляют большой интерес для изучения, т.к. имеют очень простые формулировки, но, тем не менее, не могут быть решены при помощи циркуля и линейки без привлечения дополнительных средств.

Информация по педагогике:

Опытно-экспериментальная работа по формированию у младших школьников ценностного отношения к здоровому образу жизни в процессе обучения
На констатирующем этапе экспериментальной работы осуществлялась диагностика степени сформированности валеологических ценностей у детей экспериментальной группы. Для этого использовались следующие методики: · Анкета по оценке сформированности программы здорового образа жизни. · Тестирование, позволя ...

Виды универсальных учебных действий
В составе основных видов универсальных учебных действий, соответствующих ключевым целям общего образования, можно выделить четыре блока: 1) личностный; 2) регулятивный (включающий также действия саморегуляции); 3) познавательный; 4) коммуникативный. Личностные действия обеспечивают ценностно-смысло ...

Фрагмент календарно-тематического плана
Таблица 2 Фрагмент календарно-тематического плана занятий по теме «Трехфазные цепи» для студентов направления подготовки 050100.07- «Профессиональное обучение» профиль «Транспорт» направленность – «Обеспечение безопасности дорожного движения», «Эксплуатация и ремонт автомобилей», «Организация перев ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2025 - All Rights Reserved - www.easilyeducation.ru