При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем проведения прямых и окружностей так и не увенчались успехом. Эту задачу не могли решить математики на протяжении более двух тысячелетий. Лишь в 19 веке усилиями нескольких выдающихся математиков – Ламберта, Лиувилля, Эрмита и Вейерштрасса – была установлена неразрешимость этой задачи, невозможность такого построения. Было предложено много приближенных решений. Неразрешимыми оказались и задача трисекции угла – деления данного угла на три равные части с помощью циркуля и линейки, и задача удвоения куба – построения ребра куба, объем которого вдвое больше объема данного куба.
Изыскание все новых и новых способов решения задачи о трисекции угла показало, что эта задача тесно примыкает к задачам алгебры и тригонометрии. Так, еще в XV в. самаркандский ученый ал-Каши применил трисекцию угла к составлению весьма точных тригонометрических таблиц, нужных для вычислительной математики и астрономии. Применяя прием приближенного численного решения кубического уравнения, он по известному значению sin 3° производит вычисление sin 1°. Далее, в XVI в. знаменитый французский математик Ф. Виет на основе трисекции угла находит тригонометрическое решение кубического уравнения в так называемом неприводимом случае.
Весьма оригинальные, но довольно сложные способы решения задачи о трисекции угла дали ученые Декарт, Ньютон, Клеро, Шаль и др. Все эти решения обычно основаны на отыскании точек пересечения конического сечения с окружностью. Попытки найти новые решения задачи о трисекции угла продолжаются и в настоящее время (например, при помощи номографии).
Еще в 1755 г. Парижская академия наук ввиду бесплодности усилий математиков, а еще более нематематиков, пытавшихся решить знаменитые задачи древности, вынесла решение впредь не принимать на рассмотрение работы, касающиеся квадратуры круга, а также трисекции угла и удвоения куба. Это несколько охладило пыл «квадратурщиков».
Знаменитые задачи древности представляют большой интерес для изучения, т.к. имеют очень простые формулировки, но, тем не менее, не могут быть решены при помощи циркуля и линейки без привлечения дополнительных средств.
Информация по педагогике:
Анализ школьных программ и учебников
Основными идеями современной концепции школьного химического образования являются идеи гуманизации и демократизации образования, согласно которым «следует преодолеть отчуждение науки и производства от человека. В процессе обучения химии необходимо раскрывать связь между химическими знаниями и повсе ...
Моделирования как метод познания. Классификация моделей и видов
моделирования
Моделирование ныне приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе. Многочисленные факты, свидетельствующие о широком применении метода моделирования в исследованиях, некоторые противоречия, которые при этом возникают, потребовали ...
Организационно-методические модели
дистанционного образования
Обучение по типу экстерната. Обучение, ориентированное на школьные или вузовские (экзаменационные) требования, предназначалось для учащихся и студентов, которые по каким-то причинам не могли посещать стационарные учебные заведения. Так, в 1836 году был организован Лондонский университет, основной з ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.