Понятие множества является одним из основных понятий математики и поэтому не определяется через другие. Его поясняют на примерах. Так, можно говорить о множестве букв в некотором слове, о множестве однозначных чисел.
Объекты, из которых образуется множество, называют его элементами.
В математике изучают не только те или иные множества, но и связи, отношения между ними.
Если множества А и В имеют общие элементы, т.е. элементы принадлежащие одновременно А и В, то говорят, что эти множества пересекаются. Если множества не имеют общих элементов, то говорят, что они не пересекаются.
Если каждый элемент множества В является элементом множества А, то говорят, что В – подмножество А, и пишется ВÌ А.
Множество В называется подмножеством множества А, если каждый элемент множества В является также элементом множества А. пустое множество является подмножеством любого множества (Æ Ì А). любое множество является подмножеством самого себя (А Ì А).
Продолжим рассмотрение отношений между множествами. Если каждый элемент множества В является элементом множества А и, наоборот, каждый элемент множества А является элементом множества В, то говорят, что множества А и В равны, и пишут: А=В.
Множества А и В называются равными, если А Ì В и В Ì А.
Из определения равных множеств вытекает, что равные множества состоят из одних и тех же элементов и порядок записи элементов множества не существен.
Все пустые множества равны.
Отношения между множествами наглядно можно представить с помощью кругов Эйлера. В том случае, если множества А и В имеют общие элементы, но не одно из них не является подмножеством другого, их изображают так, как это показано на рисунке 1.
рисунок 1.
Непересекающиеся множества А и В представляют при помощи двух кругов, не имеющих общих точек (рис.2).
рисунок 2.
Если множество В является подмножеством А, то круг, изображающий множество В, целиком помещается в круг, изображающий множество А (рис.3).
рисунок 3.
Равные множества представляют в виде одного круга (рис.4).
рисунок 4.
В математике часто приходится решать задачи, которые связаны с нахождением общих элементов двух или более совокупностей или с объединением нескольких совокупностей в одну. Обобщением таких ситуаций являются операции пересечения и объединения множеств.
Пересечением множеств А и В называется множество, состоящее из тех или только этих элементов, которые принадлежат как множеству А, так и множеству В.
Пересечение любых множеств А и В всегда существует и оно единственно.
Если представить множества А и В при помощи кругов Эйлера, то пересечение данных множеств изобразится закрашенной областью (рис.5).
рисунок 5.
В том случае, когда множества А и В не имеют общих элементов, то говорят, что их пересечение пусто и пишут: А Ç В = Æ.
Операция, при помощи которой находят пересечение множеств, называется так же пересечением.
Объединением множеств А и В называется множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств Аи В.
Объединение любых множеств А и В всегда существует, и оно единственно.
Объединение множеств А и В обозначают: А È В.
Если представить множества А и В при помощи кругов Эйлера, то объединение данных множеств изобразится закрашенной областью (рис.6).
рисунок 6.
Операция, при помощи которой находят объединение множеств, называется также объединением.
Информация по педагогике:
Основы биологической переработки отходов
Специфическое применение биотехнологических методов для решения проблем окружающей среды, таких, как переработка отходов, очистка воды, устранение загрязнений, составляет предмет экологической биотехнологии. Получение биогаза Биогаз – это смесь из 65% метана, 30% СО2, 1% сероводорода. Энергия, закл ...
Определение уровня развития представлений о форме предметов у детей
контрольной и экспериментальной групп на контрольном этапе эксперимента
Целью контрольного эксперимента явилось выявление динамики уровня развития представлений о форме предметов у детей. Для этого нами был проведен эксперимент, аналогичный тому, что проводился в начале исследования. Необходимо отметить, что эксперимент проводился с экспериментальной и контрольной груп ...
Площадь криволинейной трапеции
Криволинейной называется трапеция, одна из боковых сторон которой – отрезок кривой. Нахождение площади криволинейной трапеции рассматривается в школе как одно из применений интеграла. При рассмотрении геометрического смысла интеграла [4] в 11 классе в учебнике так и говорится: «Коротко об интеграле ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.