Описание логики решения творческих задач

Страница 1

Логика постановки творческих задач не соответствует той логике, в которой они возникали в истории. Сначала детям предлагаются простые задачи, с которыми учащиеся легко справляются, их решение позволяет учащимся включиться в исследовательскую работу, поставить проблему существования общего решения задачи. Самостоятельный поиск решений на данном этапе является критерием того, что учащиеся приняли задачу как творческую. Все предложенные способы должны быть проверены. После этого формулируется гипотеза о необходимости привлечения дополнительных средств, так как средствами циркуля и линейки задачу решить не удается.

Дополнительные средства вводятся как исторический материал, задача учащихся их проанализировать, развить или обобщить и применить для решения своих задач.

Учащиеся, пишущие творческую работу по теме «Знаменитые задачи древности» проводят самостоятельное исследование задач в режиме консультаций с руководителем.

Рассмотрим логику решения каждой задачи.

Задача о трисекции угла

Требуется произвольный угол разделить на три равные части.

1. Решение простых задач.

Задача о трисекции угла не предлагается детям в общем виде. Перед учащимися ставится задача разделить прямой угол на три равные части при помощи циркуля и линейки. Такое построение выполняли еще древние греки. Затем задание усложняется – нужно разделить на три равные части угол 45о. Эти два задания не должны вызвать трудности у учащихся, так как основные построения циркулем и линейкой им известны.

2. Создание ситуации затруднения.

После этого ставится задача, неразрешимая средствами циркуля и линейки – разделить на три равные части угол 60о. На этом этапе возникнет затруднение, проблема, можно ли разделить угол 60о на три равные части. Можно ли вообще произвольный угол разделить на три равные части при помощи циркуля и линейки? Таким образом, сформулирована задача о трисекции угла.

3. Осознание недостаточности средств для решения задачи.

Так как для двух углов задачу решить удалось, то можно попробовать обобщить эти задачи, найти еще углы, для которых можно выполнима трисекция при помощи циркуля и линейки. Учащимися, пишущими творческую работу, будет выделен класс углов, которые можно разделить на 3 равные части при помощи циркуля и линейки, способом, основанным на делении прямого угла. Затем школьниками будет предложено несколько способов трисекции угла, все они должны быть проверены, и доказано, что они дают неверный результат, или используют не только циркуль и линейку. На основании этого можно выдвинуть гипотезу, что задача о трисекции угла неразрешима в общем виде, только при помощи циркуля и линейки. Если же использовать какое-либо дополнительное условие, накладываемое на средства, то задача может стать разрешимой.

4. Введение дополнительного средства (исторический материал).

В качестве первого решения, использующего дополнительное условие, учащиеся рассматривают способ Архимеда. Текст решения им предлагается для самостоятельного изучения.

Далее школьниками изучается построение квадратрисы

5. Анализ и применение средств.

Учащиеся должны выделить, какое дополнительное условие использовал Архимед и доказать его способ. Исследуя способ Архимеда, нужно определить границы его использования, попытаться обобщить его.

Учащимися выделяется основное свойство квадратрисы. После этого выполняется трисекция острого угла при помощи квадратрисы, основанная на ее свойстве. Одним из направлений дальнейшего исследования может быть изучение квадратрисы, деление с ее помощью произвольного угла на произвольное количество частей.

Страницы: 1 2 3

Информация по педагогике:

Становление и развитие теории и практики проектного обучения в школе
Генезис постановки проблемы проектирования в педагогике и образовании показывает, что одним из первых советских педагогов обративших внимание на данную проблему является А.С. Макаренко. Анализ его педагогического наследия свидетельствует о том, что А.С. Макаренко много внимания уделял проектировани ...

Подходы разных авторов к выделению психологических основ дифференцированного обучения
Итак, индивидуализация и дифференциация представляют собой учёт индивидуальных особенностей учащихся в учебной работе. Возникает вопрос: какие же это индивидуальные особенности личности учащегося, которые обусловливают индивидуализацию обучения? Принцип индивидуального подхода в дидактике предполаг ...

Нетрадиционные формы контроля знаний и умений учащихся
За последние годы в методической литературе появляются описания разнообразных методов опроса, которые представляют несомненный интерес. На уроках возможны короткие проверочные работы нетрадиционного вида. В каждой теме выделяются ключевые понятия и термины, которые могут быть положены в основу крос ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2026 - All Rights Reserved - www.easilyeducation.ru