Комментарий:
В качестве задач, создающих ситуацию успеха для учащихся и позволяющих им включиться в исследование, служат частные случаи задачи о трисекции угла.
Задача об удвоении куба
Требуется построить ребро куба, который по объему был бы в два раза больше данного куба.
1. Решение простых задач. |
Аналогично задаче о трисекции угла, учащимся не предлагается сразу решить задачу об удвоении куба. Сначала ставится легко решаемая задача об удвоении квадрата, т. е. построении квадрата, который превосходил бы данный по площади в два раза. |
2. Создание ситуации затруднения. |
Следующим шагом учащимся предлагается обобщить задачу об удвоении квадрата, таким образом, будет сформулирована задача об удвоении куба. Нужно попытаться решить ее аналогично предыдущей задаче. |
3. Осознание недостаточности средств для решения задачи. |
Решение задачи об удвоении куба сводится к построению циркулем и линейкой корня кубического из двух. Но провести это построение невозможно. Нужно рассмотреть построения, осуществимые при помощи циркуля и линейки, и убедиться, что корень третьей степени к ним не относится. Можно ли решить задачу об удвоении куба, используя дополнительные средства? |
4. Введение дополнительного средства (исторический материал). |
Учащимся предлагается рассмотреть предложенное Гиппократом Хиосским сведение задачи об удвоении куба к отысканию «вставок». Школьникам выдаются тексты, в которых описаны приборы для их нахождения: прибор Платона и мезолябий Эратосфена. Остается открытым вопрос, можно ли получить ребро куба без помощи «вставок». Для этого учащимся предлагается рассмотреть функции, к которым свел задачу Менехм. |
5. Анализ и применение средств. |
Нужно изучить принцип построения «вставок» и выделить, что будет являться ребром удвоенного куба. Как же найти эти «вставки»? Учащиеся должны разобраться с устройством приборов для их нахождения, восстановить построение «вставок» и выделить ребро удвоенного куба. Нужно разобраться, как получены функции Менехма, и как с их помощью построить ребро удвоенного куба. Для этого необходимо построить графики функций и найти ребро удвоенного куба по графику. |
Комментарий:
В качестве задач, создающих ситуацию успеха для учащихся и позволяющих им включиться в исследование, служат аналогичные задачи, так как выделить класс задач, имеющих решение, невозможно.
Задача о квадратуре круга
Построить квадрат, площадь которого была бы равновелика площади данного круга.
1. Решение простых задач. |
Сначала учащимся предлагается построить квадрат, равный по площади данному прямоугольнику, затем треугольнику. Эти задачи достаточно легко решаются. |
2. Создание ситуации затруднения. |
Тогда школьникам предлагается построить квадрат, равный по площади данному кругу. Эта задача вызывает затруднение, так как сводится к построению . |
3. Осознание недостаточности средств для решения задачи. |
Так как построить не удается, учащиеся формулируют гипотезу о неразрешимости задачи и приступают к поискам приближенного решения. Такие решения должны быть обоснованы, и указана степень точности. |
4. Введение дополнительного средства (исторический материал). |
После этого учащимся предлагается рассмотреть треугольник Бинга. В качестве еще одного средства решения задачи о квадратуре круга выступает квадратриса. Учащимся предлагается воспользоваться соотношением и теоремой, при помощи которых задачу решал Динострат. |
5. Анализ и применение средств. |
Нужно разобраться в построении треугольника Бинга, исследовать способ нахождения стороны искомого квадрата, выделить, является решение приближенным или точным. Нужно изучить построение квадратрисы и выделить ее основное свойство. Применить предложенные формулы для решения задачи. |
Информация по педагогике:
Школа, Вуз в воспитании молодежи
Большую ценность представляют правила хорошего тона, строго соблюдаемые горцами в их общении. Употребление нецензурного слова даже в узком кругу товарищей считается предосудительным проступком, из-за которого человек теряет уважение окружающих. Ругательство можно услышать только в случае серьезной ...
Содержание и методика экспериментальной работы по формированию культуры
межнационального общения младших школьников средствами коллективной творческой
деятельности
Этика межнациональных отношений есть не что иное, как высокая степень совершенства и развития этих отношений, которые проявляются в межнациональных и духовных связях разных народов, в соблюдении определенного нравственного такта и взаимной уважительности людей различных национальностей друг к другу ...
Общая психологическая характеристика
школьника 13-15 лет
Для разработки методического пособия необходимо учитывать особенности возраста учеников. В большинстве случаев изучение темы «Движение» в школе проходит в то время когда ученикам от 13 до 15 лет. Что соответствует подростковому возрасту. В этот период происходит биологическое созревание ребенка, чт ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.