Описание логики решения творческих задач

Страница 2

Комментарий:

В качестве задач, создающих ситуацию успеха для учащихся и позволяющих им включиться в исследование, служат частные случаи задачи о трисекции угла.

Задача об удвоении куба

Требуется построить ребро куба, который по объему был бы в два раза больше данного куба.

1. Решение простых задач.

Аналогично задаче о трисекции угла, учащимся не предлагается сразу решить задачу об удвоении куба. Сначала ставится легко решаемая задача об удвоении квадрата, т. е. построении квадрата, который превосходил бы данный по площади в два раза.

2. Создание ситуации затруднения.

Следующим шагом учащимся предлагается обобщить задачу об удвоении квадрата, таким образом, будет сформулирована задача об удвоении куба. Нужно попытаться решить ее аналогично предыдущей задаче.

3. Осознание недостаточности средств для решения задачи.

Решение задачи об удвоении куба сводится к построению циркулем и линейкой корня кубического из двух. Но провести это построение невозможно. Нужно рассмотреть построения, осуществимые при помощи циркуля и линейки, и убедиться, что корень третьей степени к ним не относится. Можно ли решить задачу об удвоении куба, используя дополнительные средства?

4. Введение дополнительного средства (исторический материал).

Учащимся предлагается рассмотреть предложенное Гиппократом Хиосским сведение задачи об удвоении куба к отысканию «вставок». Школьникам выдаются тексты, в которых описаны приборы для их нахождения: прибор Платона и мезолябий Эратосфена.

Остается открытым вопрос, можно ли получить ребро куба без помощи «вставок». Для этого учащимся предлагается рассмотреть функции, к которым свел задачу Менехм.

5. Анализ и применение средств.

Нужно изучить принцип построения «вставок» и выделить, что будет являться ребром удвоенного куба. Как же найти эти «вставки»? Учащиеся должны разобраться с устройством приборов для их нахождения, восстановить построение «вставок» и выделить ребро удвоенного куба.

Нужно разобраться, как получены функции Менехма, и как с их помощью построить ребро удвоенного куба. Для этого необходимо построить графики функций и найти ребро удвоенного куба по графику.

Комментарий:

В качестве задач, создающих ситуацию успеха для учащихся и позволяющих им включиться в исследование, служат аналогичные задачи, так как выделить класс задач, имеющих решение, невозможно.

Задача о квадратуре круга

Построить квадрат, площадь которого была бы равновелика площади данного круга.

1. Решение простых задач.

Сначала учащимся предлагается построить квадрат, равный по площади данному прямоугольнику, затем треугольнику. Эти задачи достаточно легко решаются.

2. Создание ситуации затруднения.

Тогда школьникам предлагается построить квадрат, равный по площади данному кругу. Эта задача вызывает затруднение, так как сводится к построению .

3. Осознание недостаточности средств для решения задачи.

Так как построить не удается, учащиеся формулируют гипотезу о неразрешимости задачи и приступают к поискам приближенного решения. Такие решения должны быть обоснованы, и указана степень точности.

4. Введение дополнительного средства (исторический материал).

После этого учащимся предлагается рассмотреть треугольник Бинга. В качестве еще одного средства решения задачи о квадратуре круга выступает квадратриса. Учащимся предлагается воспользоваться соотношением и теоремой, при помощи которых задачу решал Динострат.

5. Анализ и применение средств.

Нужно разобраться в построении треугольника Бинга, исследовать способ нахождения стороны искомого квадрата, выделить, является решение приближенным или точным.

Нужно изучить построение квадратрисы и выделить ее основное свойство. Применить предложенные формулы для решения задачи.

Страницы: 1 2 3

Информация по педагогике:

Психологический аспект подготовки к сдаче ЕНТ
Данный сборник тренинговых занятий разработа для психологов с целью оказания практической помощи в подготовки выпускников к экзаменам. Цель: отработка стратегии и тактики поведения в период подготовки к государственным экзаменам (ЕНТ); обучение навыкам саморегулирования и самоконтроля; повышение ув ...

Условия активизации профессионального роста руководителя образовательного учреждения
Профессиональное становление и рост руководителя образовательного учреждения сложный процесс, требующий системного анализа личности, как в структурном, так и в динамическом аспектах. Термин “профессиональное развитие”, “профессиональное становление личности” стал предметом исследования многих автор ...

Основы получения метаболитов
Процессами биотрансформации называют реакции превращения исходных органических соединений (предшественников) в целевой продукт с помощью клеток живых организмов или ферментов, выделенных из них. По отношению к процессу роста низкомолекулярные продукты метаболизма живых клеток делятся на первичные и ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2024 - All Rights Reserved - www.easilyeducation.ru