Площадь параллелограмма

Страница 1

Вывод формулы площади параллелограмма сводится к построению прямоугольника, равного данному параллелограмму по площади. Примем одну сторону параллелограмма за основание, а перпендикуляр, проведенный из любой точки противолежащей стороны на прямую, содержащую основание будем называть высотой параллелограмма. Тогда площадь параллелограмма будет равна произведению его основания на высоту.

Теорема: площадь параллелограмма равна произведению его основания на высоту.

Доказательство: рассмотрим параллелограмм АВСD с площадью S. Примем сторону АD за основание и проведем высоты ВН и СК (см. рис.3). Требуется доказать, что .

Докажем сначала, что площадь прямоугольника НВСК также равна S. Трапеция АВСК составлена из параллелограмма АВСD и треугольника DСК. С другой стороны, она составлена из прямоугольника НВСК и треугольника АВН. Но прямоугольные треугольники DСК и АВН равны по гипотенузе и острому углу (их гипотенузы АВ и СD равны как противоположные стороны параллелограмма, а углы 1 и 2 равны как соответственные углы при пересечении параллельных прямых АВ и СD секущей АD), поэтому их площади равны. Следовательно, площади параллелограмма АВСD и прямоугольника НВСК также равны, то есть площадь прямоугольника НВСК равна S. По теореме о площади прямоугольника , но так как ВС=АD, то . Теорема доказана.

Пользуясь соотношениями между углами и сторонами треугольника можно вывести еще одну формулу для вычисления площади параллелограмма:

Воспользуемся только что полученной формулой и выразим высоту ВН через сторону АВ. В прямоугольном треугольнике АВН ВН – катет, лежащий против угла А, АВ – гипотенуза. Тогда . Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Вывод формулы площади параллелограмма в первом случае основан на теме «площадь прямоугольника» и основных свойствах площади, во втором случае – на тригонометрических соотношениях, поэтому для успешного усвоения этих формул необходимо повторить ранее изученный материал.

Задача2: Деревянная рамка, имеющая форму прямоугольника со сторонами a

и

b

,

была деформирована так, что длины ее сторон сохранились (рис.4). Высота получившегося параллелограмма равна h

.

Выразите площадь получившейся рамки через площадь исходной.

Решение: Начальная рамка имела площадь прямоугольника со сторонами a

и

b

. Значит ее площадь S1=

ab

.

Так как получившаяся рамка имеет форму параллелограмма, то ее площадь вычисляется по формуле S2=bh

. Составим отношение . или , то есть площадь параллелограмма со сторонами равными сторонам прямоугольника во столько раз меньше площади прямоугольника, во сколько раз высота, проведенная к одной стороне больше другой стороны.

Страницы: 1 2

Информация по педагогике:

Методы дистанционного университетского образования
Важным интегрированным фактором типологии дистанционных университетов является совокупность используемых в учебном процессе педагогических методов и приемов. Выбрав в качестве критерия способ коммуникации преподавателей и обучаемых, эти методы (приемы) можно классифицировать следующим образом: Мето ...

Цикличность процесса обучения
Второй общий момент для любого вида обучения – это цикличность вышеозначенного процесса, т.е. повторяемость действий педагога и обучающегося от постановки цели к поиску средств и оценке результата. С одной стороны, цикличность предполагает постановку учителем задач и целей, а также оценку усвоенных ...

Условия активизации профессионального роста руководителя образовательного учреждения
Профессиональное становление и рост руководителя образовательного учреждения сложный процесс, требующий системного анализа личности, как в структурном, так и в динамическом аспектах. Термин “профессиональное развитие”, “профессиональное становление личности” стал предметом исследования многих автор ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2026 - All Rights Reserved - www.easilyeducation.ru